Submitted on 08 Oct 2011
X-ray Modeling of η Carinae and WR140 from SPH Simulations
Christopher M. P. Russell, Michael F. Corcoran, Atsuo T. Okazaki, Thomas I. Madura, Stanley P. Owocki
The colliding wind binary (CWB) systems \eta\ Carinae and WR140 provide
unique laboratories for X-ray astrophysics. Their wind-wind collisions produce
hard X-rays that have been monitored extensively by several X-ray telescopes,
including RXTE. To interpret these RXTE X-ray light curves, we model the
wind-wind collision using 3D smoothed particle hydrodynamics (SPH) simulations.
Adiabatic simulations that account for the absorption of X-rays from an assumed
point source at the apex of the wind-collision shock cone by the distorted
winds can closely match the observed 2-10keV RXTE light curves of both \eta\
Car and WR140. This point-source model can also explain the early recovery of
\eta\ Car's X-ray light curve from the 2009.0 minimum by a factor of 2-4
reduction in the mass loss rate of \eta\ Car. Our more recent models relax the
point-source approximation and account for the spatially extended emission
along the wind-wind interaction shock front. For WR140, the computed X-ray
light curve again matches the RXTE observations quite well. But for \eta\ Car,
a hot, post-periastron bubble leads to an emission level that does not match
the extended X-ray minimum observed by RXTE. Initial results from incorporating
radiative cooling and radiatively-driven wind acceleration via a new
anti-gravity approach into the SPH code are also discussed.
https://arxiv.org/abs/1110.1692