Submitted on 26 Sep 2021

SDN-based Resource Allocation in Edge and Cloud Computing Systems: An Evolutionary Stackelberg Differential Game Approach

Jun Du, Chunxiao Jiang, Abderrahim Benslimane, Song Guo, Yong Ren

Recently, the boosting growth of computation-heavy applications raises great challenges for the Fifth Generation (5G) and future wireless networks. As responding, the hybrid edge and cloud computing (ECC) system has been expected as a promising solution to handle the increasing computational applications with low-latency and on-demand services of computation offloading, which requires new computing resource sharing and access control technology paradigms. This work establishes a software-defined networking (SDN) based architecture for edge/cloud computing services in 5G heterogeneous networks (HetNets), which can support efficient and on-demand computing resource management to optimize resource utilization and satisfy the time-varying computational tasks uploaded by user devices. In addition, resulting from the information incompleteness, we design an evolutionary game based service selection for users, which can model the replicator dynamics of service subscription. Based on this dynamic access model, a Stackelberg differential game based cloud computing resource sharing mechanism is proposed to facilitate the resource trading between the cloud computing service provider (CCP) and different edge computing service providers (ECPs). Then we derive the optimal pricing and allocation strategies of cloud computing resource based on the replicator dynamics of users' service selection. These strategies can promise the maximum integral utilities to all computing service providers (CPs), meanwhile the user distribution can reach the evolutionary stable state at this Stackelberg equilibrium. Furthermore, simulation results validate the performance of the designed resource sharing mechanism, and reveal the convergence and equilibrium states of user selection, and computing resource pricing and allocation.