Submitted on 02 Aug 2023

Supernova Simulations Confront SN 1987A Neutrinos

Damiano F. G. Fiorillo, Malte Heinlein, Hans-Thomas Janka, Georg Raffelt, Edoardo Vitagliano, Robert Bollig

We return to interpreting the historical SN~1987A neutrino data from a modern perspective. To this end, we construct a suite of spherically symmetric supernova models with the Prometheus-Vertex code, using four different equations of state and five choices of final baryonic neutron-star (NS) mass in the 1.36-1.93 M$_\odot$ range. Our models include muons and proto-neutron star (PNS) convection by a mixing-length approximation. The time-integrated signals of our 1.44 M$_\odot$ models agree reasonably well with the combined data of the four relevant experiments, IMB, Kam-II, BUST, and LSD, but the high-threshold IMB detector alone favors a NS mass of 1.7-1.8 M$_\odot$, whereas Kam-II alone prefers a mass around 1.4 M$_\odot$. The cumulative energy distributions in these two detectors are well matched by models for such NS masses, and the previous tension between predicted mean neutrino energies and the combined measurements is gone, with and without flavor swap. Generally, our predicted signals do not strongly depend on assumptions about flavor mixing, because the PNS flux spectra depend only weakly on antineutrino flavor. While our models show compatibility with the events detected during the first seconds, PNS convection and nucleon correlations in the neutrino opacities lead to short PNS cooling times of 5-9 s, in conflict with the late event bunches in Kam-II and BUST after 8-9 s, which are also difficult to explain by background. Speculative interpretations include the onset of fallback of transiently ejected material onto the NS, a late phase transition in the nuclear medium, e.g., from hadronic to quark matter, or other effects that add to the standard PNS cooling emission and either stretch the signal or provide a late source of energy. More research, including systematic 3D simulations, is needed to assess these open issues.

https://arxiv.org/abs/2308.01403